

The Dingle Primary School/Power Maths White Rose Edition calculation policy, UPPER KS2

The following pages show the *Power Maths White Rose Edition* progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across *Power Maths White Rose Edition* helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods. In Key Stage 2, these methods are supplemented with calculation methods used in the 'Target Your Maths' materials.

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

 Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods. Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen. 	 Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers. Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10, 100 and 1,000. Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions. Multiplication and division of decimals are also introduced and refined in Year 6. 	 Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic. Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50%, 25%, 10% and 1%.
---	--	--

		Year 5	
	Concrete	Pictorial	Abstract
Year 5 Addition			
Column addition with whole numbers	Use place value equipment to represent additions. . Image: TTh Ima	Represent additions, using place value equipment on a place value grid alongside written methods. Image: transformed base of the state	Use column addition, including exchanges. (Children can strike through the ones underneath once they are added on.)
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving. fiq,57q $fig,57q$ $fig,725Jen f2,600 fig,725Holly f2,600 fig,450 ?$	Use approximation to check whether answers are reasonable. TTh Th H T O 2 3 4 0 5 + 7 8 9 2 2 0 2 9 7 I will use 23,000 + 8,000 to check.

The Dingle Primary School calculation policy

		Th H T O 2 6 0 0 + I 4 5 0 4 0 5 0 - - - 6 6 5 0 - - - - - - -	
Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m	Use a bar model with a number line to add tenths. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Understand the link with adding fractions. $\frac{6}{10} + \frac{2}{10} = \frac{8}{10}$ 6 tenths + 2 tenths = 8 tenths 0.6 + 0.2 = 0.8
Adding decimals using column addition	Use place value equipment to represent additions. Show 0.23 + 0.45 using place value counters.	6 tenths + 2 tenths = 8 tenths Use place value equipment on a place value grid to represent additions. Represent exchange where necessary.	Add using a column method, ensuring that children understand the link with place value. $\frac{O \cdot Tth Hth}{0 \cdot 2 \cdot 3}$ + $\frac{O \cdot 4 \cdot 5}{0 \cdot 6 \cdot 8}$ Include exchange where required, alongside an understanding of place value. $\frac{O \cdot Tth Hth}{0 \cdot 9 \cdot 2}$ + $\frac{O \cdot 3 \cdot 3}{1 \cdot 2 \cdot 5}$ Include additions where the numbers of decimal places are different.

Year 5				Tth Ht 4 (th D	?			
Subtraction Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. 2,250 - 1,070 = ?	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required. 15,735 - 2,582 = 13,153 $\underbrace{\text{TTh} \text{Th} \text{H} \text{T} \text{O}}_{\texttt{OO}}$ Now subtract the I0s. Exchange I hundred for I0 tens. $\underbrace{\text{TTh} \text{Th} \text{H} \text{T} \text{O}}_{\texttt{OO}}$ Subtract the I0s, 1,000s and 10,000s. $\underbrace{\text{TTh} \text{Th} \text{H} \text{T} \text{O}}_{\texttt{OO}}$	exch	TTh 58 1 4	e wh Th 2 8 4	H 5 0 5	req T q 3 6	0 7 4 3	

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Checking strategies and representing subtractions	Bar models represent subtractions in problem contexts, including 'find the difference'. Athletics Stadium 75,450 Hockey Centre 42,300 Velodrome 15,735 ?	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. Bella's working Correct method $\overline{TTh} \overline{Th} \overline{H} \overline{T} \overline{0}$ $\overline{TTh} \overline{Th} $

			2,002 - 1,995 = ? +5 1,995 2,000 2,002 Use addition to check subtractions. <i>I calculated 7,546 - 2,355 = 5,191.</i> <i>I will check using the inverse.</i>
decimals	Explore complements to a whole number by working in the context of length. 0.49 m 1 m - 0 m = 0 m 1 - 0.49 = ?	Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5 \cdot 74 - 2 \cdot 25 = ?$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. 3.921 - 3.75 = ? $\frac{0 \cdot \text{Tth } \text{Hth } \text{Thth}}{3 \cdot 9 2 1}$ $- \frac{3 \cdot 7 5 0}{.}$

		O Tth Hth O · Tth Hth O • Tth •	
		Exchange I tenth for I0 hundredths.	
		O • Tth Hth O · Tth Hth	
		Now subtract the 5 hundredths.	
		O • Tth Hth O · Tth Hth	
		Now subtract the 2 tenths, then the 2 ones.	
		O • Tth Hth O · Tth Hth	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'.	Use images to explore examples and non- examples of square numbers.	Understand the pattern of square numbers in the multiplication tables.
	25 is a square number because it is made from 5 rows of 5.	$8 \times 8 = 64$	<i>Use a multiplication grid to circle each square number. Can children spot a pattern?</i>
	Use cubes to explore cube numbers.	$8^2 = 64$	

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10. $7 \times 10 = 70$ $7 \times 100 = 7,000$ $7 \times 1,000 = 70,000$	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising.	Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000.	Use known facts and unitising to multiply. $5 \times 4 = 20$ $5 \times 40 = 200$ $5 \times 400 = 2,000$ $5 \times 4,000 - 20,000$ $5,000 \times 4 = 20,000$

	5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	$\begin{array}{l}4 \times 3 = 12 & 6 \times 4 = 24 \\4 \times 300 = 1,200 & 6 \times 400 = 2,400\end{array}$
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17 = ?$ $8 \times 17 = ?$ $8 \times 10 = 80$ $8 \times 10 = 80$ $8 \times 7 = 56$ 80 + 56 = 136 So, $8 \times 17 = 136$	Represent multiplications using place value equipment and add the 1s, then 10s, then 100s, then 1,000s.Use an area model and then add the parts. $I = T = 0$ $I = 0$ <t< th=""></t<>
Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. 23 x 15 = ?	Use an area model and add the parts. $28 \times 15 = ?$ 20 m 8 m $20 \times 10 = 200 \text{ m}^2$ $8 \times 10 = 80 \text{ m}^2$ $8 \times 10 = 80 \text{ m}^2$ $8 \times 5 = 40 \text{ m}^2$ $4 \text{ d} 0$ $4 \text{ d} 2 \text{ 0}$ $1 \text{ d} 2 \text{ d}$ $4 \text{ d} 0$ $4 \text{ d} 2 \text{ d}$ 1000 240 4 1500 1856

$10 \times 15 = 150$ $1 \times 5 = 0$ $1 \times 5 = 0$ $1 \times 5 = 0$ $1 \times 5 = 345$ $1 \times 15 = 345$		$\begin{array}{c} 3 & 4 \\ \times & 2 & 7 \\ 2 & 3 & 28 \\ \end{array} & 34 \times 7 \\ \hline & & \\ \end{array} \\ \times & 2 & 7 \\ 2 & 3 & 28 \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$
Multiplying up to 4-digits by 2-digits	Use the area model then add the parts. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use column multiplication, ensuring understanding of place value at each stage. Expanded method may be used first to aid understanding. (below right) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

			$1,274 \times 32 = ?$ First multiply 1,274 by 2. $\begin{array}{r} 1 & 2 & 7 & 4 \\ \times & 3 & 2 \\ \hline 2 & 5 & 4 & 8 \\ \hline 2 & 5 & 4 & 8 \\ \hline 2 & 5 & 4 & 8 \\ \hline 1 & 2 & 7 & 4 \\ \times & 3 & 2 \\ \hline \hline \hline Then multiply 1,274 by 30. \\ \end{array}$ $\begin{array}{r} 1 & 2 & 7 & 4 \\ \times & 3 & 2 \\ \hline 2 & 5 & 4 & 8 \\ \hline \hline 3 & 8 & 2^{2} & 2 \\ \hline \hline$
Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid. $\begin{array}{c} \hline \\ \hline $	$1,274 \times 32 = 40,768$ Understand how this exchange is represented on a place value chart. $2 \cdot 5 \times 10 = 25$ $2 \cdot 5 \times 10 = 250$ $2 \cdot 5 \times 100 = 250$ $2 \cdot 5 \times 1,000 = 2,500$ $2 \cdot 5 \times 1,000 = 2,500$

Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number.	Understand that prime numbers are numbers with exactly two factors.	Understand how to recognise prime and composite numbers.
		$13 \div 1 = 13 13 \div 2 = 6 r 1 13 \div 4 = 4 r 1$	I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder.
	$24 \div 3 = 8$ $24 \div 8 = 3$	•••••	I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33.
	8 and 3 are factors of 24 because they divide 24 exactly.	1 and 13 are the only factors of 13. 13 is a prime number.	I know that 1 is not a prime number, as it has only 1 factor.
	24 ÷ 5 = 4 remainder 4.		
Understanding inverse operations and the link with	Use equipment to group and share and to explore the calculations that are present.	Represent multiplicative relationships and explore the families of division facts.	Represent the different multiplicative relationships to solve problems requiring inverse operations.
multiplication, grouping and sharing	I made 7 groups of 4. There are 28 in total.		$12 \div = 3$ $x = 12$ $x = 3$ $x = 12$ $x = 3$ $x = 12$ $x = 3$
	<i>I have 28 in total. I shared them equally into 7 groups. There are 4 in each group.</i>	$60 \div 4 = 15$ $60 \div 15 = 4$	Understand missing number problems for
	I have 28 in total. I made groups of 4. There are 7 equal groups.		division calculations and know how to solve them using inverse operations.

			$22 \div ? = 222 \div 2 = ?? \div 2 = 22? \div 22 = 2$				
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. <i>4,000 ÷ 1,000</i>	Use a bar model to support dividing by unitising. $380 \div 10 = 38$	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.				
	4,000		Th H T O З 2 0 0				
	4,000 is 4 thousands. 4 × 1,000= 4,000 So, 4,000 ÷ 1,000 = 4	380 10×0 $380 \text{ is } 38 \text{ tens.}$ $38 \times 10 = 380$ $10 \times 38 = 380$ $So, 380 \div 10 = 38$	$3,200 \div 100 = ?$ 3,200 is 3 thousands and 2 hundreds. $200 \div 100 = 2$ $3,000 \div 100 = 30$ $3,200 \div 100 = 32$ So, the digits will move two places to the right.				
Dividing by nultiples of 10, 00 and 1,000	Use place value equipment to represent known facts and unitising.	Represent related facts with place value equipment when dividing by unitising.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $3,000 \div 5 = 600$ $3,000 \div 50 = 60$ $3,000 \div 500 = 6$ $5 \times 600 = 3,000$ $50 \times 60 = 3,000$ $500 \times 6 = 3,000$				
	15 tens put into groups of 3 tens. There are 5 groups.	18 tens divided into groups of 3 tens. There are 6 groups.					

	150 ÷ 30 = 5	180 ÷ 30 = 6	
		12 ones divided into groups of 4. There are 3 groups.	
		12 hundreds divided into groups of 4 hundreds. There are 3 groups.	
		$1200 \div 400 = 3$	
Dividing up to four digits by a single digit	Explore grouping using place value equipment.	Use place value equipment on a place value grid alongside short division. The model uses grouping.	Use short division for up to 4-digit numbers divided by a single digit.
using short division	$268 \div 2 = ?$	A sharing model can also be used, although the model would need adapting.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones.		3,892 ÷ 7 = 556
	264 ÷ 2 = 134		Use multiplication to check.
			$556 \times 7 = ?$ $6 \times 7 = 42$ $50 \times 7 = 350$ $500 \times 7 = 3500$
		Lay out the problem as a short division.	3,500 + 350 + 42 = 3,892
		There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones.	

		Work with divisions that require exchange. 4 \boxed{q} 2 \boxed{T} 0 $\boxed{0}$ $$	
Understanding remainders	Understand remainders using concrete versions of a problem. 80 cakes divided into trays of 6. 80 cakes in total. They make 13 groups of 6, with 2 remaining.	Use short division and understand remainders as the last remaining 1s. $\begin{bmatrix} 1 \\ 8 \\ 0 \end{bmatrix} \xrightarrow{T} 0$ $\begin{bmatrix} 1 \\ 8 \\ 0 \end{bmatrix} \xrightarrow{T} 0$ $\begin{bmatrix} 1 \\ 8 \\ 20 \end{bmatrix} \xrightarrow{T} 0$ $\begin{bmatrix} 1 \\ 8 \\ 20 \end{bmatrix} \xrightarrow{T} 0$ $\begin{bmatrix} 1 \\ 3 \\ 20 \end{bmatrix} \xrightarrow{T} 0$ $\begin{bmatrix} 1$	In problem solving contexts, represent divisions including remainders with a bar model. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange. 2 ones are 20 tenths.	Represent division using exchange on a place value grid.	Understand the movement of digits on a place value grid.

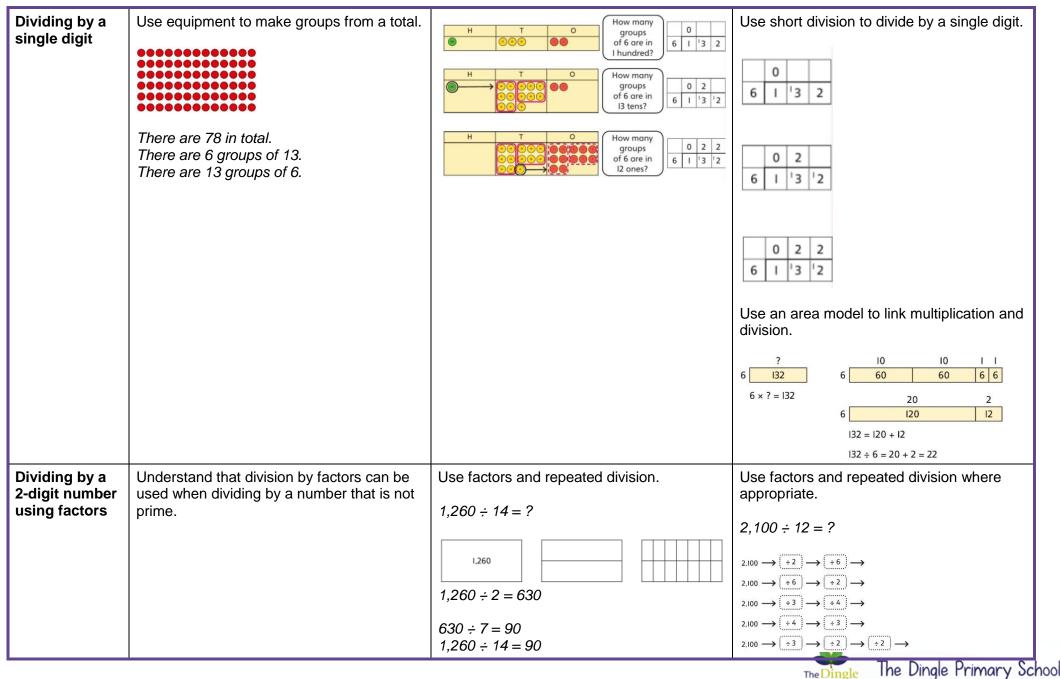
	20 tenths divided by 10 is 2 tenths.	\circ TthHth \circ \circ Tth \vee \circ	$0 \cdot 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. <i>1 whole shared between 3 people.</i> <i>Each person receives one-third.</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>()</i> <i>(</i>	Use a bar model and other fraction representations to show the link between fractions and division. $I \div 3 = \frac{1}{3}$	Use the link between division and fractions to calculate divisions. $5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$ $11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$

		Year 6	
	Concrete	Pictorial	Abstract
Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. $\frac{7}{40,365 3,572}$ $\frac{1}{10000000000000000000000000000000000$	Use column addition where mental methods are not efficient. Recognise common errors with column addition. (Children can strike through ones underneath once added on.) $32,145 + 4,302 = ?$ $\frac{\text{TTh Th H T O}}{3 2 1 4 5} \qquad \frac{\text{TTh Th H T O}}{3 2 1 4 5}$ $+ \frac{4 3 0 2}{7 5 1 6 5}$ $Which method has been completedaccurately?$ What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient. $\frac{\text{H T O · Tth Hth}}{1 4 0 \cdot 0 9}$ $+ \frac{4 9 \cdot 8 9}{1 8 9 \cdot 9 8}$
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods.	Use a bar model to support thinking in addition problems. 257,000 + 99,000 = ? 100,000	Use place value and unitising to support mental calculations with larger numbers. 195,000 + 6,000 = ? 195 + 5 + 1 = 201

Understanding order of operations in calculations	2,411,301 + 500,000 = ? This would be 5 more counters in the HTh place. So, the total is 2,911,301. 2,411,301 + 500,000 = 2,911,301 Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5 - 2 = ?$ $3 \times 5 - 2 = !3$	I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands = 357 thousands 257,000 + 100,000 = 357,000 357,000 - 1,000 = 356,000 So, 257,000 + 99,000 = 356,000 Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	195 thousands + 6 thousands = 201 thousands So, 195,000 + 6,000 = 201,000 Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $4 + 6 \times 16$ 4 + 96 = 100 $(4 + 6) \times 16$ $10 \times 16 = 160$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. The Dingle Primary Sc

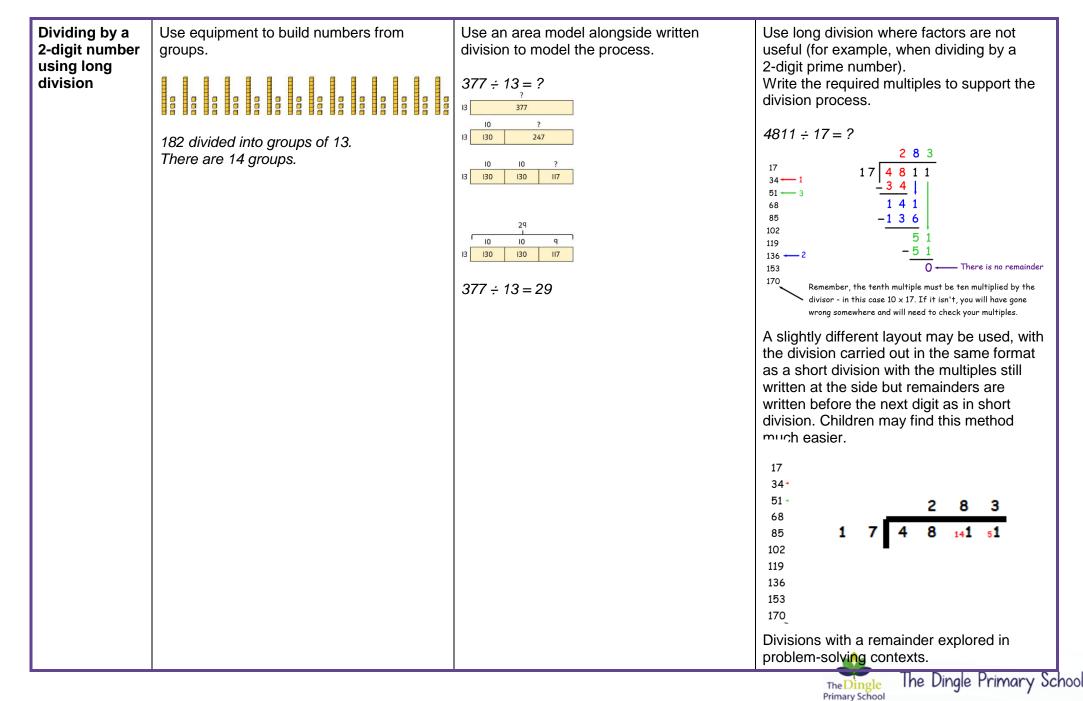
	2.679 $7 534$ $Th H T O$ $2 6 7 9$ 534 $Th H T O$ $2 6 7 9$ $5 3 4$ $2 1 4 5$ $Th H T O$ $5 3 4$ $2 1 4 5$ $5 3 4$ $2 1 4 5$ $5 3 4$ $5 4 4$ $5 4$	$\frac{\text{Th} \text{ H} \text{ T} \text{ O}}{1 \frac{9}{9} \frac{19}{9} \frac{19}{2}} = \frac{46}{1.552 \text{ I}.558} = \frac{-400}{1.552 \text{ I}.558}$ Use column subtraction for decimal problems, including in the context of measure. $\frac{\text{H} \text{ T} \text{ O} \cdot \text{Tth Hth}}{3 \text{ O} \text{ Q} \cdot 6 \text{ O}} = \frac{2 \text{ O} 6 \cdot 4 \text{ O}}{1 \text{ O} 3 \cdot 2 \text{ O}}$
Subtracting mentally with larger numbers	Use a bar model to show how unitising can support mental calculations. 950,000 – 150,000 That is 950 thousands – 150 thousands	Subtract efficiently from powers of 10. 10,000 - 500 = ?

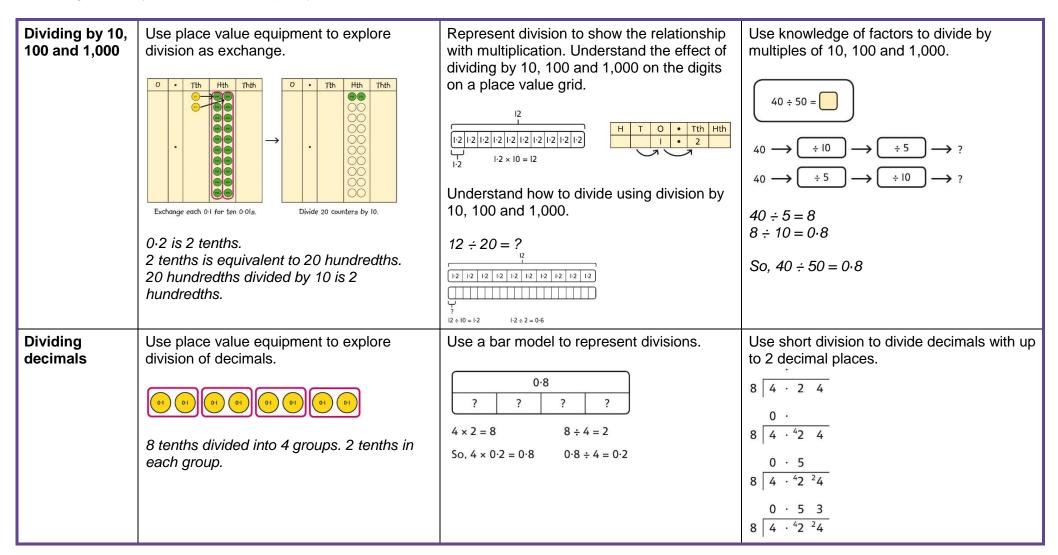
Year 6 Multiplication		950 150 800 So, the difference is 800 thousands. 950,000 - 150,000 = 800,000	
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use place value equipment to compare methods. Method I 3 2 5 5 3 2 2 5 3 2 2 5 3 2 2 5 4 3 2 2 5 1 2 9 0 0 1 1 1 1 Method 2 $4 \times 200 + 4 \times 20 + 4 \times 5$ 12,000 + 800 + 80 + 80 + 20 = 12,900	Understand area model and short multiplication.Compare and select appropriate methods for specific multiplications.Method 3 $3,000 \ 200 \ 20 \ 5 \ 4 \ 12,000 \ 800 \ 80 \ 20 \ 12,000 + 800 + 80 + 20 = 12,900$ Method 4 $1 \ 2 \ 9 \ 0 \ 0 \ 1 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 1$
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Use compact column multiplication with understanding of place value at all stages.


			2 3 5 \times 2 2 1 2 2 3 5 1×235 4 7_{χ} 0 0 20×235 4 4 9 3 5 21×235 21×235
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $5 \times 5 = 5^2 = 25$ $5 \times 5 \times 5 = 5^3 = 25 \times 5 = 125$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts. $\begin{array}{c c} 170 \times 11 & 171 \times 11 \\ 170 \times 12 & 170 \times 11 = 170 \\ 170 \times 12 & 170 \times 110 \\ 170 \times 110 \times 110 \times 110 \times 110 \\ 170 \times 110 \times 1$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000. $8 \times 100 = 800$

	TOTRepresent 0·3.TOTMultiply by 10.TOMultiply by 10.Exchange each group of ten tenths. $0 \cdot 3 \times 10 = ?$ O \cdot 3 is 3 tenths. 10×3 tenths are 30 tenths.30 tenths are equivalent to 3 ones.	$\begin{array}{c c} \hline & 0 & \cdot & \text{Tth} \\ \hline & 0 & \cdot & \text{Tth} \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\$	$8 \times 300 = 800 \times 3$ = 2,400 2.5 × 10 = 25 2.5 × 20 = 2.5 × 10 × 2 = 50
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid. $3 \times 3 = 9$ $3 \times 0.3 = 0.9$ TOOTTH 0000 0000 0000	Use known facts to multiply decimals. $4 \times 3 = 12$ $4 \times 0.3 = 1.2$ $4 \times 0.03 = 0.12$ $20 \times 5 = 100$ $20 \times 0.5 = 10$ $20 \times 0.05 = 1$ Find families of facts from a known multiplication.
	$4 \times 1 \ cm = 4 \ cm$ $4 \times 1 \cdot 3 \ cm = 1.2 \ cm$ $4 \times 1 \cdot 3 = 4 + 1 \cdot 2 = 5 \cdot 2 \ cm$	Understand the link between multiplying decimals and repeated addition. $\underbrace{T + 0.2 + 0.2 + 0.2 + 0.2}_{0} + \underbrace{1}_{0} + $	I know that $18 \times 4 = 72$. This can help me work out: $1 \cdot 8 \times 4 = ?$ $18 \times 0.4 = ?$ $180 \times 0.4 = ?$ $18 \times 0.04 = ?$ Use a place value grid to understand the effects of multiplying decimals.

			ĺ	Н	Т	0	•	Tth	Hth	
			2 × 3			6	•			
			0·2 × 3			0	•	6		
			0·02 × 3				•			
Year 6 Division										
Understanding factors	Use equipment to explore different factors of a number.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recogn Underst and that	and th	hat 2	is the	only	y eve	n prim	
	24 ÷ 4 = 6	17+2=8rl 17+3=5r2 17+4=4rl 17+5=3r2	(1) 12 (3 4 13 14 23 24 33 34	15 I 25 2		28 (9 10 19 20 29 30 39 40		
		1/+2=011 1/+3=312 1/+4=411 1/+3=312		43 44	+		48		-	
	30 ÷ 4 = 7 remainder 2									
	4 is a factor of 24 but is not a factor of 30.									





Primary School

